Response of the chiral soliton lattice to spin-polarized currents
Spin-polarized currents originate a spin-transfer torque that enables the manipulation of magnetic textures. Here we theoretically study the effect of a spin-polarized current on the magnetic texture corresponding to a chiral soliton lattice in a monoaxial helimagnet under a transverse magnetic field. At sufficiently small current density the chiral soliton lattice reaches a steady motion state with a velocity proportional to the intensity of the applied current, the mobility being independent of the density of solitons and the magnetic field. This motion is accompanied with a small conical distortion of the chiral soliton lattice. At large current density the spin-transfer torque destabilizes the chiral soliton lattice, driving the system to a ferromagnetic state parallel to the magnetic field. We analyze how the deformation of the chiral soliton lattice depends on the applied current density. The destruction of the chiral soliton lattice under current could serve as a possible erasure mechanisms for spintronic applications.