Thermal fluctuations in the conical state of monoaxial helimagnets.

Thermal fluctuations in the conical state of monoaxial helimagnets.

The effect of thermal fluctuations on the phase structure of monoaxial helimagnets with external magnetic field parallel to the chiral axis is analyzed by means of a saddle point expansion of the free energy. The phase transition that separates the conical and forced ferromagnetic phases is changed to first order by the thermal fluctuations. In a purely monoaxial system the pitch of the conical state remains independent of temperature and magnetic field, as in mean-field theory, even when fluctuations are taken into account. However, in the presence of weak Dzyaloshinskii-Moriya interactions in the plane perpendicular to the chiral axis, thermal fluctuations induce a dependence of the pitch on temperature and magnetic field. This may serve to determine the nature of magnetic interactions in such systems.